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In extrusion and molding of crystalline polymers a melt under stress cools and

crystallizes under non-isothermal conditions. Both the stress and the temperature

gradients influence the course of the crystallization and thus the morphology and

properties of the product. It is difficult to devise experiments for studying crystal-

lization which separate and control'these effects. This paper is concerned with a

method for studying the influence of a temperature gradient on the crystallization of

a quiescent polymer melt.

When a polymer melt is injected into a cold mold the rapid transfer of heat to

the mold can establish steep temperature gradients in the polymer. Clark and Garber

(1, 2) have reported observations on injection molding of poly-oxymethylene which

Selated the depth of oriented crystal growth from the surface to factors influencing

the crystallization temperature and temperature gradients (mold temperature and

pressure). Others have reported characterizations of transcrystalline polymer

growths from metal surfaces (3-6). Attempts to control the gradient during polymer

crystallization have been made using techniques derived from zone-melting (7-10).

Highly oriented polyethylene and polypropylene specimens have been prepared by this

technique. However, the zone-melting technique is not well suited to a systematic

sjtudy of temperature gradient effects on polymer crystallization. The apparatus is

complex and the temperature gradient is poorly defined.

APPARATUS

For this study a simple apparatus was conceived which is indicated schematically

i,n Fig. 1. A layer of polymer is sandwiched between two metal plates (brass). Temp-

eratures of the plates are controlled by embedded electrical resistance heaters and
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cooling coils through which air or water may be circulated. Temperatures of the

p1lates are sensed by embedded thermocouples. The faces of the plates are four

inches by six inches with a central area two inches by three inches occupied by the

sample. An asbestos gasket covering the remainder of the face contained the molten

sample and shielded against excessive heat transfer between the plates.

A crystallization experiment is conducted by placing a polymer specimen'of the

desired thickness between the plates and then programming the temperature of the

plates as indicated in Fig. 2. First the plates are heated so that both are above

the melting point of the polymer and a temperature difference is established between

them. Both plates are then cooled at a constant rate so that the temperature dif-

ference between them remains constant. At the start sufficient time is allowed to

establish the steady-state linear temperature profile in the polymer. Provided the

sample is not too thick or the cooling rate too fast an essentially linear temp-

erature profile is maintained in the polymer melt as it is cooled. Temperature

control in our experiments was by manual adjustment of heaters and cooling fluid.

The sensitivity was such that we stayed within +1C of the desired temperatures

except in the fastest cooling rate experiments where deviations of +2C occurred.

When the lower temperature plate reaches Tm, the equilibrium melting point of the

polymer, crystallization may begin at that surface. However, as crystallization rates

for a polymer are very slow at temperatures near the melting point, supercooling

occurs. The crystallization rate increases rapidly with supercooling which tends to

stabilize the crystallization rate with respect to the cooling. If we assume that

crystallization has begun at the colder face and proceeded outward into the melt

establishing a crystal-melt interface which is at a temperature Ti then two con-
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ditions are possible. If the crystallization rate at Ti is faster than the rate of

progression of the temperature, the front will move out to a region of higher T
i
and

lower crystallization rate. If the crystallization rate is slower than the temper-

ature progression, Ti will decrease and the crystallization rate will increase. The

tendency then is for the interface to arrive at a temperature where thecrystal-

lization will keep pace 'with the temperature. Crystallization will then occur at a

constant temperature, T
i
, and at a rate consistent with the progression of T

i
.

Taking time zero when the colder plate is at the equilibrium melting point

then:

T1 =:Tm - bO

T2= T1 +-AT = Tm - bOg+ AT

Tx = Tm - bQ + (AT/L)x

where C is time, b the cooling rate, T the temperature difference

between plates and L the thickness of the polymer

then:

Ti Tm -bG+ (AT/L)x

x = T - Tm + b/{(AT/L)} 

or

dxi/dQ =b/{(AT/L)} = b/g
1
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where (dXi/dg) is the -ate of progression of the front at Ti which is then also the

rate of progression of the crystal growth front. g is the temperature gradient,

(AT/L). Since b, T and L. can be independently chosen it is possible to excercise

separate control of the crystal. growth rate (and thereby of the temperature at

which crystallization occurs) and of the temperature.gradient during crystallization

This analysis is an oversimplification. At fast cooling rates or with thick

specimens there will be deviation from a linear temperature profile. This, however,

is not serious and the distortion is·predictable. The crystalline polymer and the

Imelt have different thermal conductivities which also produces a distortion which

is predictable if one knows the relative conductivities of the phases. There is

lalso a volume change on crystallization. This can also cause a minor distortion if

IL and thus. the gradient change. More seriously the contraction can lead to poor

jcontact between polymer and the plates. This was avoided in our experiments by

applying sufficient pressure on the plates to maintain contact and absorbing the

polymer contraction by letting L decrease. In some experiments L was maintained

constant by feeding molten polymer under pressure through a hole in the hotter

plate to compensate for the volume shrinkage on crystallization. More important

1than these abberations however are the effects of nucleation and crystallization

lahead of the growth front.

EXPERIMENTS:

Experiments were done using three different polymers; linear polyethylene

(Marlex 6050) isotactic polypropylene (origin unknown) and another high density
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polyethylene of unknown origin. In all experiments the apparatus was initially

hated to a point where the lowest temperature was 50C above the nominal melting

p1int.of the polymer and these conditions were maintained for one hour before

cooling began.

The appearance of the Marlex 6050 after crystallization with a gradient was

typically as shown in Fig. 3, a micrograph of a section viewed between crossed

polarizers. Wide angle Xray diffraction of the specimens also reflected the oriented

crystallization which was characterized by measuring the width of the peaks on a

densitometer trace of the (200) ring. As may be seen from the listing of the half

widths in Table 1,- orientation is favored by a steep gradient coupled with a slow

cooling rate. With fast cooling no orientation may result even if a steep gradient

is maintained.

Qualitatively similar results were obtained with polypropylene. Micrographs

of the structures of polypropylene samples are shown in Fig. 4. Sample 1 shows

spherulites elongated in the growth direction, similar to what was observed for the

Marlex 6050 polyethylene. These are also evident in samples 2 and 3 while in samples

4,( 5 and 6 the spherulites are more severely'elongated, sometimes traversing the

thickness of the sample. Another type of growth is also evident in samples 2, 4 and

5. The progression rate, and hence the crystallization rate was quite slow in these

experiments which were terminated (by quenching) when the hot face reached 135C.

Continuing to a hot face temperature of lOOC for specimens 1 and 6 apparently per-

mitted sufficient time to avoid this growth while for sample three the progression

rate was much faster. Thus we conclude that this growth proceeded from nuclei within

the melt primarily after the experiment was terminated by quenching.

i
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We conclude from this that the role of a temperature gradient in producing

oriented crystallization is in producing conditions which lead the spherulitic

growth pattern to proceed primarily in one direction. Since there is supercooled

melt ahead of the growth front the potential for nucleation and three dimensional

growth exists. The faster the cooling rate or progression of the oriented growth

front, the less time will be available for nucleation and unoriented growth. On

the other hand, the faster progression is associated with greater supercoolings which

may promote the rate of nucleation and unoriented growth., The net effect of cooling

rate on orientation will be the balance of competing effects and will depend on the

relative sensitivity of nucleation and growth rates to temperature. The gradient-

effect is direct. Steep gradients diminish the penetration of supercooling and thus

favor oriented growth. · 

The last series of experiments, on another high density polyethylene produced

no apparent orientation. Light microscopy revealed a morphology of minute, barely

discernible spherulites. This material apparently nucleated more readily and more

densely than the Marlex 6050 so that under comparable conditions of gradient and

cooling rate oriented growth was prevented by more rapid random nucleation ,and

growth.

The simplicity of design and operation of this apparatus recommends it for use

in studying polymer crystallization or preparing oriented polymer crystal growths

for other studies. Also it may be useful for preparation of "isothermally" crystal-

lized polymers. Polymer melts can be isothermally crystallized only as thin sheets.

or at very small. supercoolings because in larger sizes the poor heat conductivity

i .I ....... ,
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prevents maintaining a uniform temperature while cooling the melt and a significant

supercooling cannot be achieved without prior crystallization. In this apparatus

the oriented crystallization progresses with the cooling and the crystallization

occurs at an essentially constant temperature moving front..
)n 
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